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BEAM HALO IN HIGH-INTENSITY BEAMS”

lTit3MAS P. WANGLER
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ABSTRACT

In space-charge dominated beams the nonlinear space-charge forces produce ii
filarnentation p?.ttern, which in projection to the 2-D phme spaces results in a 2-
colnponrmt bean: consisting of an inner core and a diffuse outer halo. The beam-halo is
of concern for a next generation of CW,high-power proton linacs tht could be applied
to intense neutron generators for nuclear materials processing. We describe what has
been learned about beam halo and the evolution of space-charge dominated beams
using numerical simulations of initial laminar beams in uniform linear focusing
channels. We present initial results from a study of beam entropy for an intense spacc-
charge dominated beam.

INTRODUCTION

For beams with high average intensity, one may be concerned not with the ‘rms or
avemge phase-space areas, but with the outer part of the distribution, often called ths
beam halo, which affects particle losses in an accelerator. Relatively small losses in a
high-energy accelerator may produce enough radio~ctivation of the accelerator smlcture
or radiation darniige of components to c~eate practical difficulties ill maintenance and
~peration 1. A major cause of beam-halo growth in low-velocity intense beams is the
Coulomb self force. In most accelemtor beams this is predominantly a collective force;
small-impact-parameter binary collisions usuitlly have little effect on the dynamics.
This smoothed or averiige Chdomh force is calkd the space-charge force and is
dcscribd by a repulsive self-electric field and an attriictive self-magnetic fiekl. The
rnagnctic tin-m is only important for relativistic beams and its contribution reduces the
totiil SpaCe-Chiirge force.

The space-charge force is complicated k~iiuse the field depends upon the timc-
wirying charge density of the beam, is nonlinear, time dependent, and coupled between
the t:wcc planes. 1n the presence of cxterniil focusing forces, (m observes phtm(mma
thtit arc common in pliisll~ii physics, such as Pliisrnii oscill:l[io[ls ild Dcbye shickiing.
‘1’}wpl:tSINU period (Ictcrmincs il bitsi~ time scale for these phcnonlerlii, i]ld the Dchyc
]cngth determines ii hiisi~ length s~iilc for (he particle distribution. The net torcc,
consisting ()! the cxt~rniil f(~using plUS th~ tinlc-dcpcndci~t spii~e-~hilrg~ f(.mx, [lliiy h

eirhcr :~ttractive or repulsive, iid the sign of the net force Iniiy cvc.n Viuy ii~ross (}IC

IW;II1l. ‘1’tlCSC conditions Cilll lCild to very m)l)lincar hChiiVlor,, illld OIIC must rciy on
ll[llllCriCi\l \illlUliltioll (’()(iCS to StUdy thC dctailtxi dynmnics,
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quadrqde channel. We usea numerical simulation code2 for these studies in which
the radial space-charge forces are calculated from Gauss’s Law. Consequently, we are
studying the effect of the collective forces acting on each particle and ~gnoring the
srnal I-impact-parameter binary Coukxnb collisions. With radial symmetry this is a 1-D
(strictly speaking a single variable) problem. Our computer code has been run with
2000 simulation parricks through 56 steps per plasma period, choices that are adequate
to represent the main featuxes of the spacx-charge forces. We have chosen to study the
dynamics of an initial rrrx+mismatched laminar (zero emittance) beam. Laminar beams
am idealizations because all real beams have finite ernittancc. Nevertheless, the laminar
beam represents the extreme space-charge limit and allows us to emphasize the effects
of the space charge.

In Figs. 1 and 2 we show the distributions of a) the radial or r - r’ phase space, b)
the projected or x - x’ (and y - y’) phase space, and c) the x - y beam cross section.
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pluw.!.qxvx,tran~vcrwx - x’ and y - y’ plww.s-, and ctww m-lion x - y frwm
sunuhwm of an mitiirt undorm-dcrrwy lamlnar hcarn in d unitofm Iincar focusing chnnne] fur i) t = (),
b) t = ().25, c) I - ().5(), turd d) t - ().75 m uni~~ of beam-plawnci periods. T?IC initinl m~s trcM,I we; in
x M y am 50% LJU~rr tlum the rrmkhtil sim
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Fig.2. ~ti(r-r’)~s~e,~ ~x-x’dy-y ’~~, dm~tim(x-y)
from simtdatian of m inhial Gausman-dcndty laminar beam in a uniform iincar focusing dumn(. for
a)lm O.b)t~0.2S, c)t-0,50, d) t= 0.75,0) t=l.OO, f)t=l.50, g) t=2.00, h)t=3.00, i)t=
4.00, j) t = 5,00, k) t .10.00, and 1) t m 20.(K), in units of &am-plasma periods. The initial rrns
!Rnm Sizcsinxandy Xc. so%lal-gerthxnthcmatchcdtizc.

We show the r -r’ phtwes acc bcnmsc we expect the dynamics to ap.~ar simpler in r -
fr’ spucc when only radial orccs act on a hminar katn. We assign an initial positive

radiusto all particles, but if durin~ the simulation a particle crmscs the axis, wc chamgc
the sign of tk radius before pkmtng a point in r-r’ space.

Mismatched Uniform Density Lmninar Beam

We begin by studying the dynm~ics of an initial s act-charge dominated unifortn-
[density lmninar beam with 7mrJ velocity spread, whit is rrtM mismatched so thut the

initial rnw kam size is larger than the matched value by a factor of 1.5, Figures 1a
thrvugh 1d show the beam characteristics for four differwtt times, O, ().25, ().5(), and
(),75, ntcnmt-cd in beam-piasmn pm-iotk. The beam-plasma period for a uniform Imun
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Fig. 2. (amL)

of density nO is define-d in the usual way; thus TP =2z/ cv~,,a.nd@~=q2n0 ,/Eomisthc

beam-Plmma frquency. The phase-space plots show dcnsi!y (plasma) oscillations that
arc excited by the unhda.need external fcmsing and inmna.1 space-chargt fcwm. The.
mtal force aitcmmcs m the Ixa.m-pkmn fmcp?mcy ktwccn fcmtsing ad dcfwusing.
‘flm cbargc distribution always ms UifOI..I so that only IkM fmm u m thc

km, d. the cmittancx reins m. h he ahcnce of qmc-charge forces particles
would expcrimcc only the cxtcmal fields and would uoss the tis as they cxczutc
bctatmn o=illstions. For a spcc-charge dmninntcd baun. k p~ticles do not cross
the axis, but each particle owillatm almw an quilihium radius.

Gaussian Dcnslty l.arrdnat Beam

Next wc exnrninc the dynamics of an initb.1 Gaussiandcnsity lammar beam with
mm initial veiocity spread, which is rnx mimruuchcd by the w factor 1.5. Figures
2a through 21 show Msequence of plots for diffcrcm times in units of k plm.srnspcrind
(defined fm the quivalcnt uniform km with the sarnc mm sin). For this cnsc, thr
cxtcmtil fmoc is linca.r, hu[ [he npa.ce-charge force is nonlinear. Sevctal new fcaum
nrr p-cscnt. Most of !!K small mnplitude trajccta-ics undmgo plasma os.cillmions (T’Icy
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do nm cross the axis) and form an inner cm-c. The large ampJitdc trajectories
correspond to bctatmn oscillations (they cross the axis) and develop into an outer halo.
In r - r’ space h halo evolves like a fin -shaped filament- In x - x’ space the ring

kappears as a Iowdensiry disk. These di crcnces am the result of the fact that any
arbitrary poi.m in r - r’ spuc projects to a straight line in x - x’ space tht passes
through the origin and mngcs bctwccn (-r,-r~ and (r~’). Although effective emittancc
growh has okn km identified with a process of fila.rrmmtion, we see rhat the
filarrwnt in this problcm ISobserved in the r - r’ phase space. In the usual x - x’
projected ptiadespace the outer

r
of the filament korncs a diffuse disk-like htio,

This will be discussed in mom etail in the following section.
Even within a f~ ~ plasma nods the nonlinear space-charge force pmduccs a

rrandom-lookin~ disrnbuticm o poinw within the core This r~ndcmizmion m
thcmwlization ISthe rmull of a p-mess in which the inner pan of the rllarncnl in r - r’
space is stretched and f~~ldcdrrmny times. The stretching and foldin@ is amociatcd with
variations of the magnitude and sign of the space-char

t
force. -l-he !Ialo produced after

scvcrai plasma puiods is a mmmon fcmurr of the ncm ‘near !+mce<hmge force Wc
find thrt[ he outer filanmL. seen in r -r’ spncc contain mostly the ptuticle with large



initial amplitudes but also contain a few particles with small initial amplitudes that were
launched during the initial stages of randomization of the core. For our example, the
halo is a distinctive structure in r - r’ space even after 20 plasma periods; unlike the
core, the haio is not yet thermalizc.d.

At present there is no established criterion ior defining me haio, For tinepresent
example of an rms-rnismatchcd Gaussian larninar - we find that an ellipse with the
same Courant-Snyder parameters as the rms ellipse and with an emitta.nce five times
larger than the rms ellipse in r-r’ space, appears to enclose most of the core and exclude
most of the halo. K we define the core particles to lx all those contained within this
ellipse, and define halo particles as those outside, we find that after about 10 plasma
periods, 6% of the particles arc contained within the halo. For this example the core
and the halo contribute about equally to the final rms ernittance. Furthermore, therms
emittance of the core grows to its final value in about one-quarter of a phsma period,
like that of an rms-matched beams. Most of the growth of the halo occurs over about
10 plasma pcriods4. More study is ncwicd to determine how these results vary with
the amount of mismatch and to determine what happens when using more realistic
beams with nonzro irtidal cmhtance. C)nc concern for this probl~ with pure radial
dynamics is that because all particles that cross the axis must pms through a common
point at the origin (x=y=O), dIR may be singular density fluctuations at the origin that
may produce unrealistic forces. Previous work on cmittancc growth for this 2-D
mismatched beam is given in Rcfs. 4 and 5, and for 1-D sheet bcarns in Ref. 6.

2.4 Filamentation and Beam Halo

Thc phmc-space plots in Fig. 2 show a complex fdamcntation pattern in r-r’ space,
where the halo forms an outer ring. The prescncc of fdamentation is a well known
effect of nonlinear forces in 1-D, and in this 2-D problcm it is observed clearly in r-r’
phase-space. However, in the projected phase-spaces x-x’, and y-y’, the halo does not
appear as a ring, but forms the diffuse structures, observed in Fig. 2. This is explained
from the fact that each point in r-r’ phase space projects into a straight line in x-x’ or y-
y’ phase space, as is shown ir Fig. 3.

i-’

(-r,-r’)

x’

/

(r,r’)

, x

I:ig. 3. Projectionof n pmnt iri r-r’ IAKW sp&c into x-x’ phasespacem n straight lkIc.



TO understand this we consider a particle with plw cmmi.inates (r,q), which
moves only radially with divergence r’= dr/dz. In Cartesian coordinates we have x=
rcosq, y=rsinq, x’=r’cosq. and y’-’sinq, and we Ob~Y X’/X= Y’/Y= r’~r.Therefore!
x ‘=xr’/rand y’= v r’/r, and for fixed r and r’ the relanonskp between x‘ and x is
expressed by a straight line that passes through the origin. I“he values or x and X:for
fixed r and r’ depend on the angle q. ne exnme v~ues are x = *r, and x’= 3/. This
results in points or straight lines ti *C r-r’ pl~c transfotig into straight lines in the
X-X’plane, while crowd lines in ~C r-r’ pl~e UZUM@I into a f~likc bu~efiy or
bow-tie pattern in the x-x’plme. ~ general, ~ arbltr~ filament in the r-r’ plane
appears as a more diffuse distibuaon of points in tic x-x’plane. A more complete
treatment, including beams with no~ ~gular momcntwn is given in Ref. 7.

BEAM ENTROPY

We ate interested in identifying some general principles, which allow us to
understand why a charged-p~cle - disrnburion CVOIVCSas it does, and towards
which steady-state disrnbution the beam is cvoiving. We am natiy Id to reexamine
the concept of beam entropy, which wu diSCUSSdby Lawson, Lapostollc, and
Gluckstem8 in 1973. In this paper tie auth~ conclticd that the beam entropy is a
measure of d.iscmier,which is related to emittartce, the mom conventional measure of
dkorder in beams. The authors concludd Mt beam entropy depends on 1) nns
emittancc, 2) the distribution function, and 3) the p~ase-space cell size chosen to define
the entropy. The dependence of entropy on the disrnbution function implies the entropy
depends not only on the second rnomats of the disrnbution, but also on the higher
moments. The phase-s ace cell size of intcmst may be determined by the experimental
resolution. Wc will SC( !ater that the entropy concept may indeed be a useful one if one
distinguishes between the microscopic “ aracterizadon of the distribution and a
macroscopic or cmme-gmined one. Of Lmuse, this distinction has also been important
for Cmittartce.

To proceed further wc review the entropy concept. FirsL given an arbitrary phase-
space distribution, wc divide phase-space into cells of equal volume. One distinguishes
between microscopic and macroscopic SLtes. The microscopic state is dcfmed by
specifying the cell where each particle is located. The macroscopic state is defined by
specifyiiig only the total population of each cell, regardless of which particles are
present. The measured properties of the beam, such as the particle distribution and the
rrn.. cmittance clearly depend only on the macroscopic state. Following Boltzmann’s
approach, wc define the disorder of the macroscopic state as the number of ways of
permuting the individual particles between the cells, while maintaining the same
macroscopic state. Thus the disorder is the number of distinct microscopic states that
result in the same macroscopic state. That this ~epresen~s a measure of disorder follows
horn the assumption that more ordered macroscopic states wiU have fewer microscopic
wavs in which they can be constructed. Given a system of N particles to be distributed
among m cells, and with nl particles in the ith cell, the disorder W is given by

l-l

T’tJcentropy is defined using Boltzrnann’s constant k, m



[
S=klogw=k logN!-~logrlJ!

I 1
For example, the most ordmxl macroscopic state has all particles m one ce!l, and

the above defmiaons result in S=0. As the particles become distributed in more cells,
the disorder and entropy both increase.

It is interesting to consider the Iimitig case of very large numbers of particles and
cells with infinitesimal volume. For very large numbcn of particles per cell, It follows
from Stirling’s formula that

logn!=nlogn - n. Then we obtain log W = N log N - ~ ni log n,. If the phase- space

derisity is f, and the cell size dV becomes infinitesimal, ~e number in the ith cell may
be expressed as n, = @V. Changing the summation to an imegral, we write

logW aNlogN-NlogdV +~tW’log~. For fixed NanadV, the fi.rst twotermsare

constant, and if only changes ~ S with respect to time are of interes~ we need only be
concerned with the third term. The rate of change of S with respect to time is

For atypical particle-accelerator ~ which satisfies the Vlasov-Poisson
quation, df/dt = O,which implies that dS/dt = O.Therefore, on a microscopic or fine-
grained scale, the entropy is constant. This is not surprising, bccausc fkom Liowille’s
theorem the microscopic phase-space density along the trajcct.oryof any particle is
constant. However, fbr entropy defined using phase-space cells with a finite volume,
the entropy is not necessarily constant. This situation is not unlike that of cmittance,
which may change on a coarse-gained scale, even though Liouville’s theorem
guarantees a consmnt phase-space volume on a microscopic scale.

Intuitively, a lam.inar barn is a highly ordetwi state with zero cmittanee. Although,
particle collisions would produce disorder on a microscopic scale, the space-charge
forces, which satisfy the Vksov-poisson quation cannot increase the micrmcopic
entropy, as we have seen. However, one may ask whether the nonlinear space-charge
forces increase disorder and entropy on a coarse-grained scale. To answer this
question, we have ca.nicdout a mlmericalsimulation study for an initial Gaussian, rims
matched, space-chargedorninated or laminar 2-D continuous bca~ in a unifcnm linear
focusing channel with radial symmetry. We divided the phase-space d.isrnbution into
100 by 200 equal-volume cells. The initial beam had zem divergence, a Gaussian
disrnbution in -al space, truncated at 3s, and populated 74 phase-space cells. Using
2(IOOparticles, b; each time step the zmtropyj S = k logW was computd. Fig. 4 shoivs
the computed entropy plotted versus the distance along the channel, expressed in
plasma wavelengths. We scc oscillations at the plasma period that damp out by about
15 periods. The time-averaged entropy incrcmcs most rapidly during the first 15
plasma periods, and continues to increase afterwards very slowly. This example shows
that the coarse-grahicd entropy, avemgcd over time, does increase. For comparison,
the mm emittance (not shown) increases during the first quarwr plasma period3, after
which it remains essentially constant. When the same simulation is done for a
nusmatched, Iam.kar beam, we obscmc oscillations in the coa.mc-grained entropy th~t
me associated with the oscillating beam radius. For a uniform-density, huninar beam
the time tweragul, coarse -gmined entropy rcmttins constmm
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Chssian density&Ininarbeam.

A law of coarsegained cntmpy immase might be used to dcscribc two previously
unexplainedchmactcristicsof space-churgc dornimrcdbeams.F= it is observed in
numericalsimuhstionsthatsuch beamsdo not appearto evolve towardhighly ordered
equilibrium statessuch as the well knownK-V distribution, lxtt rather towards more
dismdcmd stateswith acom velocity distributionsimiiarto Maxwclliam Recently fwr
example, the nmxitnum-entropy hypothesis was used to describe the charamristics of
the final distributionfor a high-intensityexpanding&am in fme Spa.ccg.Wondly, a
tendencyfor beamswith mom thar one degree of fkedcn.n to equipartition has been
discus~ especially in high-intensitylinacs~o. Thus, it may bc of inumxt to explore
the idea of coarse-graincdentropyincreaseas a means fm a conceptualunderstanding
of these impot%amobsuvatiotts.~~

CONCLUSIONS

Even Z&Xmore than 20 years wc find that them are many questions about spacls-
charge cffezts that bavc not “beenmsokxi. An importantgcncraiquestion wnccrm
the nature of the state of the beamaftera few tensto a few kmdrcd plasmaperiods,a
tm’xscale of practicalinterestformany linearlmxlcratorsandtranspw’tSystems. k the
txxunor at least thecom of the beamin sow approximate equilibrium state? Why am
certain equilibrium distributions more tqxesentativc of nxalbeams than others? Is a
umrsc-grained Maxwc1l-Boltzmanndistribution a good dcsmiption?If cquipartitioning
is Echaracteristicof the bcaIwwhy is it so? One inttmxtkg andplausiblehypothesis is
thatenough nordincarity%providedby the space-charge Rxccs for the beam to
approacha stareof maximum(coarse-gtaincd)entropy. This may cxphdn why beams
in numcricsdsimulationsdo not evolve towatd highly onkmd equilibrium states like the
K V distribution, and why we observe a tendency for beamsto rquipattitiontheir
kinetic cncrgk. h is clear thataiot of work still nmains before wc have a cornplctc



undemanding of th~sinme sting and important area of charged-parti~le-beam physics.
A mm general discussion of space-charge dominated beams, including a more
complete set of references on the subject carI be found in Ref. 10.
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